0 Daumen
612 Aufrufe

Die Fahrzeit in Minuten zur Uni sei exponentialverteilt mit durchschnittlicher Fahrzeit μ=23 Minuten.
Die Verteilungsfunktion F(x) ist gegeben durch:

F(x)= { 0   x < 0

       1 - exp(-1/μ x)  ≥ 0 }


Berechnen Sie die Wahrscheinlichkeit in Prozent für eine Fahrzeit größer oder gleich 7 Minuten.


Leider weiß ich hier aufgrund der gefragten 7 Minuten nicht wie ich rechnen soll. Geht das ähnlich wie bei einer Prozentangabe?

Avatar von

2 Antworten

0 Daumen

Aloha :)

Die Verteilungsfunktion F(x)F(x) an der Stelle xx, gibt die Wahrscheinlichkeit dafür an, dass die Zufallsvariable XX einen Wert kleiner xx hat:P(X<x)=F(x)P(X<x)=F(x)Daher brauchst du hier nur in das Gegenereignis einzusetzen:

P(X7)=1P(X<7)=1F(7)=1(1e1237)=e7230,7376P(X\ge 7)=1-P(X<7)=1-F(7)=1-\left(1-e^{-\frac{1}{23}\cdot 7}\right)=e^{-\frac{7}{23}}\approx0,7376

Avatar von 153 k 🚀

Vielen Dank :)

0 Daumen

P(X ≤ x) = F(x) = 1 - e^(- x/μ)

P(X ≥ x) = 1 - F(x) = 1 - (1 - e^(- x/μ)) = e^(- x/μ)

Damit berechnest du jetzt die gesuchte Wahrscheinlichkeit:

P(X ≥ 7) = e^(- 7/23) = 0.7376 = 73.67%

Avatar von 493 k 🚀

Vielen Dank :)

Ein anderes Problem?

Stell deine Frage