0 Daumen
1,2k Aufrufe

Hallo Zusammen,

ich habe eine Frage bezüglich des Differenzenquotienten. Dabei muss ich die x --> x0 Methode verwenden:

Wende auf die Funktion f(x)=2/(x-1) den Grenzwert des Differenzenquotienten für x--> x0 an.

Mein Ansatz:

f ' (xo)= lim      ( f(x)-f(x0) ) /( x-x0 )
           x --> x0

 

Und dann die Funktion oben eingesetzt. Doch weiß ich nicht wie ich weiter rechnen muss :(. Brauche wirklich dringend Hilfe

Schon mal Danke und Viel Spaß

von
Nachfrage : wie heißt die Funktion

 a.) f ( x ) = ( 2 / x ) -1 oder

 a.) f ( x ) = 2 / ( x-1 )

  mfg Georg
das zweite, also: f(x) = 2/ (x-1)

Noch eine Nachfrage

Du schreibst:

f ' (0)= lim      ( f(x)-f(x0) ) /( x-x
           x --> x0

Meinst du

f ' (0)= lim      ( f(x)-f(x0) ) /( x-x
           x --> 0

oder

f ' (xo)= lim      ( f(x)-f(x0) ) /( x-x
           x --> x0

x0   Das war mein Fehrler: Tschuldigung

2 Antworten

+1 Punkt
 
Beste Antwort

f ' (xo)= lim      ( f(x)-f(x0) ) /( x-x)  
           x --> x0

f ' (xo)= lim      ( 2/(x-1) - 2/(x0-1) ) /( x-x)    |Bruchaddition
           x --> x0

f ' (xo)= lim      ( 2(xo-1) - 2(x-1)) /((x-1)(x0-1)) ) /( x-x)  

           x --> x0

f ' (xo)= lim      ( 2xo-2 - 2x+2) /((x-1)(x0-1)) ) /( x-x)  

           x --> x0

f ' (xo)= lim      ( 2xo - 2x) /((x-1)(x0-1)) ) /( x-x)    |Doppelbruch vereinfachen

           x --> x0                                                   | -2 ausklammern

f ' (xo)= lim      ( -2(x - xo)) /((x-1)(x0-1)(x-xo))          |kürzen

           x --> x0

f ' (xo)= lim      (- 2) /((x-1)(x0-1))         |Grenzwert

           x --> x0

f ' (xo)=      (- 2) /((xo-1)(xo-1))    =     -2/(xo-1)^2

 

           

von 145 k
Ein Gaaaaaaaaaaaaanz Großes Dankeschön auch an dich :))
+1 Punkt

f(x) = 2/(x - 1)

m = (f(x + h) - f(x)) / h

m = (2/(x + h - 1) - 2/(x - 1)) / h

Den Zahler auf einen Hauptnenner bringen und vereinfachen.

m  = 2·h/((1 - x)·(x + h - 1)) / h

m  = -2 / ((x - 1)·(x + h - 1))

für h --> 0

m  = -2/(x - 1)^2

von 268 k
Ist ja richtig was du da gerechnet hast und ich bin auch in der Lage deine Rechung nachzuvollziehen. Aber leider brauche ich die x-Methode. Kannst du die auch?
Das funktioniert mit der x0 Methode ganz genau so. Also schön auf den Hauptnenner bringen und vereinfachen.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...