0 Daumen
966 Aufrufe


ich bereite mich gerade für eine matheprüfung vor und sitze gerade an ein paar aufgaben, die ich leider nicht lösen kann.

Die Aufgabe lautet:

In einem alten Kirchturm befindet sich eine Glocke. Als man vermehrt Risse im Kirchturm feststellt, vermutet man, dass die Glocke zu schwer sei. Aus diesem Grund soll das Gewicht der Glocke bestimmt werden.

Da keinerlei Angaben über die Konstruktion vorliegen und die Glocke auch nicht gewogen werden kann, soll eine mathematische Modellierung zu Hilfe gezogen werden, um das Gewicht der Glocke zu ermitteln.

Die Glocke ist 2m hoch und besteht aus Bronze.

Folgenede Messpunkte kannst du als Punkte des Außenrandes in einem geeigneten Koordinatensystem heranziehen:

N(2/0), P(0,5/0,58), W(1/0,47)

Ermiitle eine passende Funktion 3. Grades zu diesen Angaben. (Gehe davon aus, dass W ein Wendepunkt ist, und erläutere Sie mit Hilfe dr Kurvendiskussion). Beurteile deine Modellierung.

Überlege, welche Möglichkeiten es gäbe die Glockenform zu modellieren, wenn man mehrere Funktionen zu Hilfe nimmt. Beschreibe was dabei zu beachten ist.

Die Glocke kann als ein Körper betrachtet werden, der durch Rotation um die x-Achse entsteht. Ermittle das Gewicht der Glocke. Triff dazu zunächst geeignete Angaben.

Ich hoffe einer von euch kann mir da helfen :S

mfg
von
So wie ich das verstehe sollst du nicht 2 Funktionen finden die die Glocke beschreiben. Du sollst nur Beschreiben welche Möglichkeiten es gibt die Glocke mit mehreren Funktionen zu beschreiben.

Zur Modellierung mit beliebig vielen Funktionen kann man die Glocke durch beliebig viele Punkte und dazwischenliegenden Funktionen annähern. Je mehr Stützstellen man nimmt desto genauer wird vermutlich die Funktion werden. Es sollte darauf geachtet werden das die Funktionen zumindest Sprungfrei ineinander übergehen. Knickfrei hängt natürlich von der genauen Form der Glocke ab. Außerdem sollte es natürlich auf der x-Achse keine Definitionslücken im Bereich der Glocke geben.

Vielleicht fällt noch jemanden etwas ein.
Gibt es hier schon. immai hat wohl bisher nicht die Zeit gefunden: https://www.mathelounge.de/126601/kurvendiskussion-funktion-3-grades#a126602
Oh danke für den Hinweis. Und an den Fragesteller. Es ist unhöflich hier Fragen mehrfach zu stellen. Und wenn man das schon macht braucht man sie nicht nochmal stellen sondern vielleicht nur einen Link setzen ob man noch eine Antwort zur Frage bekommen kann.
Außerdem ist das deine Prüfung und du solltest da auch schon ein wenig Eigenleistung investieren. Nur vom Abschreiben alleine lernst du es nicht und kannst es dann auch nicht gut präsentieren.

Ich komme übrigens für die Glocke selber im Gegensatz zu Immai auf die Funktion

f(x) = - 1/3·x^3 + x^2 - 341/300·x + 47/50

Da ist mein Wert vor dem c nur etwas anders und ich habe nicht gerundet sondern Brüche stehenlassen.
Was ist denn mit Möglichkeiten gemeint ? Etwa, dass ich sage,  man könnte eine Funktion 4. Grades oder 5. Grades verwenden, sodass dies am meisten dem Graphen der Glocke entspricht?
Du sollst nicht unbedingt eine Funktion höheren Grades nehmen sondern nur mehr Funktionen. Z.B. eine die die Glocke im Intervall von 0 bis 1 beschreibt und eine die die Glocke im Intervall von 1 bis 2 beschreibt.
Bitte alle Fragen die zu einer Aufgabe gehören auch nur einmal stellen. Danke.
hey :),

könntest du mir vielleicht deinen Rechenweg schicken? wäre echt nett von dir .


mfg
Ich habe das auf die schnelle gtr benuetzt.^^

bildbildein beispiel aufgabe vielleicht hilft es ja^^

Soll ich auch erwähnen, wie ich auf solch eine Funktion komme , denn ich hab überhaupt keine AhnungAhnung
Du brauchst dafür noch mehr Punkte der Glocke. Und kannst dann jeweils wischen zwei Punkten eine Funktion legen.

HierIch weiß ja nur dass es bei 2 eine nullstelle gibt und dass der Graph die y Achse bei 0.94 schneidet. Ich kann ja mit diesen Angaben nichts anfangen oder nicht? Als Antwort wird es bestimmt nicht reichen zu sagen dass man mehrere Funktion verwendet die diese punkte schneiden oder nicht?

Du sollst nur beschreiben welche Möglichkeiten es gibt.
Wenn die Aufgabe ist du sollst untersuchen Welche Möglichkeiten es gibt von Hamburg nach München zu kommen, dann kannst du sagen, mit dem Auto, mit der Bahn, mit dem Flugzeug. Das heißt aber nicht das du dich jetzt selber auf den Weg von Hamburg nach München machen sollst.

4 Antworten

0 Daumen
F(x)=-0.6x^3+1.95x^2-2.09x+1.213. So lautet die funktion erstmal. F(2)=0. F(0.5)=0.58. F(1)=0.47 F''(1)=0 F(x)=3ax^2+2bx+c+0. PI×INT(-0.6/4x^4+1.95/3x^3-2.09/2x^2+1.213x.
von 2,1 k
Das ist kein Rätsel. Du musst halt noch eine Funktion für die Abgrenzung zum Hohlraum definieren.
Wie würde man dies schriftlich aufschreiben? Also man nimmt ja die Auflistung usw. Wie würde man denn das Volumen berechnen bzw. Wie würde die Rechnung aussehen wenn man es schriftlich machen würde? die Frage geht an euch beide
Das heißt ich erstelle eine Funktion parallel zu der jetzigen mit einem niedrigeren Wert an der y- Achse und subtrahiere die beiden Volumen voneinander?
Genau^^ aber mit einem niedriegerem hoehe
Kann trotzdem jemand meine Frage beantworten nämlich:Wie würde man dies schriftlich aufschreiben? Also man nimmt ja die Auflistung usw. Wie würde man denn das Volumen berechnen bzw. Wie würde die Rechnung aussehen wenn man es schriftlich machen würde? die Frage geht an euch beide


die volumenformel
0 Daumen

aus Duplikatsfrage:

Kann mir einer die einzelnen Schritte zu diesem gleichungssystem zeigen. Wie man nacheinander die Nullen herauskriegt?

a.   B.     C.    D.
8.    4.     2.     1. = 0

1.     1.      1.    1 = 0,47

0.125 0.25 0.5 1. = 0.58

6.    2.    0.        0.   = 0

----

$$\left( { \begin{matrix} A & B & C & D \\ 8 & 4 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 0,125 & 0,25 & 0,5 & 1 \\ 6 & 2 & 0 & 0 \end{matrix} }|{ \begin{matrix} \quad  \\ 0 \\ 0,47 \\ 0,58 \\ 0 \end{matrix} } \right) $$3.Z=3.Z * 8$$\rightarrow \left( { \begin{matrix} A & B & C & D \\ 8 & 4 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 6 & 2 & 0 & 0 \end{matrix} }|{ \begin{matrix}  \\ 0 \\ 0,47 \\ 4,64 \\ 0 \end{matrix} } \right)$$Spaltenreihenfolge umkehren$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 1 & 2 & 4 & 8 \\ 1 & 1 & 1 & 1 \\ 8 & 4 & 2 & 1 \\ 0 & 0 & 2 & 6 \end{matrix} }|{ \begin{matrix} \\ 0 \\ 0,47 \\ 4,64 \\ 0 \end{matrix} } \right) $$1.Z und 3, Z vertauschen$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 8 & 4 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 1 & 2 & 4 & 8 \\ 0 & 0 & 2 & 6 \end{matrix} }|{ \begin{matrix} \quad  \\ 4,64 \\ 0,47 \\ 0 \\ 0 \end{matrix} } \right) $$3.Z := 3.Z - 2.Z$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 8 & 4 & 2 & 1 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 2 & 6 \end{matrix} }|{ \begin{matrix} \\ 4,64 \\ 0,47 \\ -0,47 \\ 0 \end{matrix} } \right) $$ 2.Z:=8*2.Z-1.Z$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 8 & 4 & 2 & 1 \\ 0 & 4 & 6 & 7 \\ 0 & 1 & 3 & 7 \\ 0 & 0 & 2 & 6 \end{matrix} }|{ \begin{matrix} \\ 4,64 \\ -0,88 \\ -0,47 \\ 0 \end{matrix} } \right) $$ 3.Z:=4 * 3.Z - 2.Z$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 8 & 4 & 2 & 1 \\ 0 & 4 & 6 & 7 \\ 0 & 0 & 6 & 21 \\ 0 & 0 & 2 & 6 \end{matrix} }|{ \begin{matrix} \\ 4,64 \\ -0,88 \\ -1 \\ 0 \end{matrix} } \right) $$ 4.Z := 3 * 4.Z - 3.Z$$\rightarrow \left( { \begin{matrix} D & C & B & A \\ 8 & 4 & 2 & 1 \\ 0 & 4 & 6 & 7 \\ 0 & 0 & 6 & 21 \\ 0 & 0 & 0 & -3 \end{matrix} }|{ \begin{matrix} \\ 4,64 \\ -0,88 \\ -1 \\ 1 \end{matrix} } \right) $$$$\rightarrow $$$$ -3A=1$$$$\Leftrightarrow A=-\frac { 1 }{ 3 } $$$$6B=-1-21A=-1-21*\left( -\frac { 1 }{ 3 }  \right) =6$$$$\Leftrightarrow B=1$$$$ 4C=-0,88-6B-7A=-0,88-6+\frac { 7 }{ 3 } =\left( -\frac { 13,64 }{ 3 }  \right) $$$$\Leftrightarrow C=\left( -\frac { 3,41 }{ 3 }  \right) $$$$ 8D=4,64-4C-2B-A=4,64-4*\left( -\frac { 3,41 }{ 3 }  \right) -2-\left( -\frac { 1 }{ 3 }  \right) =4,11$$$$\Leftrightarrow D=0,94$$

von 32 k
0 Daumen

aus Duplikatsfrage:

Ich habe die Funktion f(x)= -1/3x3+x2-341/300+0.94
die Formel würde ja lauten : Pi *0-2 (-1/3x3+x2-341/300+0.94)2 oder nicht?

----

Vorausbemerkungen:

1) Fehlt da eventuell ein x hinter 341/300 ?

2) Was du da angibst, ist keine Formel, sodern lediglich ein Term.

Eine Formel hat immer die Form einer (Un-)Gleichung. Sie muss also ein (Un-)Gleichheitszeichen enthalten, auf dessen linker Seite die zu berechnende Größe und auf deren rechter Seite eine Berechnungsvoschrift für diese Größe steht.

Deine Formel sollte also mit V = beginnen.

 

Zu deiner Frage:

Das Volumen V des Körpers, welcher vonder Kurve f ( x ) durch die Rotation um die x-Achse im Intervall [ a , b ]  umfahren wird, ist:

$$V=\pi \int _{ a }^{ b }{ { \left( f\left( x \right)  \right)  }^{ 2 } }$$

In deinem Fall scheint der Berechungsterm etwas "verunglückt" zu sein (das Integralzeichen fehlt). Ich vermute aus dem, was zu lesen ist, dass das Intervall [ a , b ] = [ 0 , 2 ] sein soll.
Wenn ich weiterhin annehme, dass hinter dem Bruch 341 / 300 tatsächlich ein x fehlt und ich dieses ergänze, so erhalte ich für das gesuchte Volumen folgende Berechnungsvorschrift ("Formel") :

$$V=\pi \int _{ 0 }^{ 2 }{ { \left( -\frac { 1 }{ 3 } { x }^{ 3 }+{ x }^{ 2 }-\frac { 341 }{ 300 } x+0,94 \right)  }^{ 2 } } dx$$

von 32 k
Das Ergebnis deiner Rechnung ist 1.641 und wenn ich das Gewicht des Körpers berechnen will muss ich ja  das Volumen mit der Dichte multiplizieren. Der Körper besteht aus Bronze, dass heißt dass ich mit

8.7 g/cm multipliziere oder nicht? Hätte ich somit die Masse heraus? Ich habe dann 14.28 heraus. Also 14kg?

Ja, auf diese Weise kann man die Masse berechnen. Die Einheit ist allerdings abhängig von der Einheit, in der a und b angegeben sind. 

Sind a und b in cm angegeben, dann ergibt sich (falls der Wert 1,61 stimmt):

V = 1,61 cm 3

und damit

M = V * ρ

= 1,61 cm 3 * 8,7g / cm 3 = 14,0 g

A eine Einheit auf der x Achse entspricht 1 Meter . Dies heißt das a und b in Meter angegeben sind . Wie wäre denn das Ergebnis jetzt?
0 Daumen

N(2/0) ; P(0,5/0,58) ; Wendepunkt W(1/0,47)

f(x) = a·x^3 + b·x^2 + c·x + d

f(2) = 0
8·a + 4·b + 2·c + d = 0

f(0.5) = 0.58
0.125·a + 0.25·b + 0.5·c + d = 0.58

f(1) = 0.47
a + b + c + d = 0.47

f''(1) = 0
6·a + 2·b = 0

 

Das Gleichungssystem lautet also wie folgt

8·a + 4·b + 2·c + d = 0
0.125·a + 0.25·b + 0.5·c + d = 0.58
a + b + c + d = 0.47
6·a + 2·b = 0

 

Bitte probiere zunächst eine Lösung alleine. Du solltest auf folgende Lösung kommen: 
a = - 1/3 ∧ b = 1 ∧ c = - 341/300 ∧ d = 47/50

 

Wnn nicht dann stell bitte Deine Rechnung online damit sich das jemand ansehen kann.

von 391 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community