0 Daumen
122 Aufrufe

Hallo!

Meine Lösung

4x4 +6x2+18=40 |-40

4x4+6x2-22=0  |:4

x4+1,5x2-5,5=0   Entweder --> Substitution oder Polynomdivision

z²+1,5z-5,5=0

Pq-Formel:

z1/2-1,5/2 ±√(1,5/2)+5,5

z1= 7/4     v   z2=-13/4

z3=√7/4    v  z4=√-13/4 --> geht nicht, da negative Diskriminante ? 

Oder Polynomdivsion:

x4+1,5x2-5,5=0

Eine Nullstelle haben wir schon durch Pq-Formel :

(x4+03+1,5x2+0x-5,5):(x-7/4)


für die Korrektur oder Kontrolle

Luis

von 2,0 k

1 Antwort

0 Daumen

4·x^4 + 6·x^2 + 18 = 40

4·x^4 + 6·x^2 - 22 = 0

x^4 + 1.5·x^2 - 5.5 = 0

z^2 + 1.5·z - 5.5 = 0

z = - 3/4 ± √97/4

x = ±√(- 3/4 + √97/4)

x = -1.308516125 ∨ x = 1.308516125

Achtung. Man bekommt für z nur 2 Lösungen. Mit beiden Lösungen macht man die Resubstitution und enthält so bis zu 4 Lösungen.

von 385 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community