0 Daumen
4,4k Aufrufe

Hallo!

Ich habe hier ein Beispiel. Es ist gefragt, ob die Relation der zwei Gleichungen a und b

Hyperbeln, Ellipsen oder Parabeln entspricht.


a) 2x+x²+1-4y+y²=0

sowie

b) 4x²-8x+84+54y+9y²=0

Es sollen Parameter wie "Achsenlängen". "Scheitel", Asymptoten usw. bestimmt werden, Relationen grafisch dargestellt werden inkl. den Bildbereich B

und der Def.bereich D der Grafik soll abgelesen werden.



über Hilfe eurerseits würde ich mich freuen!lg!!

von

2 Antworten

+2 Daumen

Hallo,

a)  Den Kreis hast du ja schon bei Mathecoach

b)

4x² - 8x + 84 + 54y + 9y² = 0   | +1 | 85 links auf quadratische Ergänzungen * Vorfaktor aufteilen

Ausklammern und quadratisch ergänzen:

4 * (x2 - 2x + 12 ) + 9 * (y2 + 6y + 32) = 1           Ergibt  84 + 1 = 85

       (x-1)2 / (1/4) + (y+3)2 / (1/9) = 1

      (x-1)2 / (1/2)2 + (y+3)2 / (1/3)2 = 1

ist eine Ellipse  (x - xm)2 / a2 + (y - ym)2 / b2 = 1

mit dem Mittelpunkt (1|-3) und den Halbachsen a = 1/2  und  b = 1/3

Gruß Wolfgang 

von 79 k
+1 Punkt

2·x + x^2 + 1 - 4·y + y^2 = 0

x^2 + 2·x + 1 + y^2 - 4·y + 4 = 4

(x + 1)^2 + (y - 2)^2 = 2^2

Das ist ein Kreis. Kannst du die Lageparameter ablesen?

von 274 k

4·x^2 - 8·x + 84 + 54·y + 9·y^2 = 0

4·(x^2 - 2·x) + 9·(y^2 + 6·y) = -84

4·(x^2 - 2·x + 1) + 9·(y^2 + 6·y + 9) = -84 + 4 + 81

4·(x - 1)^2 + 9·(y + 3)^2 = 1

(x - 1)^2 / 0.5^2 + (y + 3)^2 / (1/3)^2 = 1

Das ist eine Ellipse. Kannst du die Lageparameter ablesen?

Erschreckend wie klar das jetzt ist. Danke!

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...