0 Daumen
725 Aufrufe

folgende Aufgabenstellung ist gegeben:

In den nächsten Minuten tritt mit folgender Wahrscheinlich das Eintreten der Kunden ein:

mindestens 4 Kunden => W(A) = 0,9

höchstens 6 Kunden => W(B) = 0,6

Gesucht Nr.1 : W(C) => das 4,5 oder 6 Kunden eintreten

Gesucht Nr.2: Wie hoch ist die Wahrscheinlich, dass 5 Kunden eintreten?

Bei Nr.1 soll der Additivsatz angewendet werden = W(C) = W(A) + W(B) - W(A ∩ B)  = 0,9 + 0,6 - ?? = ??

Mit welcher Wahrscheinlichkeit definiert sich W(A ∩ B) ?

Zu Nr.2:

Wie kann ich nun aus dem Ergebnis von Nr.1 die Wahrscheinlichkeit für 5 Kunden ableiten?



Avatar von

1 Antwort

0 Daumen

Was hältst du von folgender Überlegung?

P(A) + P(B) - P(A∩B) = P(A∪B) = 1

P(A∩B) = P(A) + P(B) - 1 = 0.9 + 0.6 - 1 = 0.5

Avatar von 493 k 🚀

Für Nr. 2 bräuchte man denke ich die Art der Verteilung. Momentan fällt mir das nicht ein wie es ohne weitere Information gehen soll.

Ich verstehe noch nicht genau, wieso 1 bei P(AB)  rauskommt.

Die Wahrscheinlichkeit, dass P(A), als auch P(B) eintritt, ist normalerweise P(A) + P(B), oder?

Aber da 0,9 + 0,6 = 1,5 ergibt und es keine Wahrscheinlichkeit über 1 gibt, ist es automatisch 1?

Die Wahrscheinlichkeit das A oder B eintritt ist 1.

Nach dem Addidionssatz gilt

P(A∪B) = P(A) + P(B) - P(A∩B)

Nun kannst du das einsetzen, was du kennst und das Ausrechnen was du haben möchtest.

Ein anderes Problem?

Stell deine Frage