Hallo
Die Gleichung w3 +a2 w2 +a1 w +a0 = 0 kannst Du umformen in a0/w3 +a1/w2 +a2/w +1 = 0
und daraus (a0/a1w)3 +(a0/a1w)2 +a2*a0/a12 (a0/a1w) +a3*a02/a13 = 0 machen
Nun ersetzt Du a0/a1w durch z -1/3:
(z -1/3)3 +(z -1/3)2 +a2*a0/a12 (z -1/3) +a02/a13 = 0
(z3 -z2 +1/3 z -1/27) +(z2 -2/3z +1/9) +(a2*a0/a12 z -1/3*a2*a0/a12) +a02/a13 = 0
z3 +(a2*a0/a12 -1/3) z -1/27 +3/27 -1/3*a2*a0/a12 +a02/a13 = 0
z3 +(a2*a0/a12 -1/3) z +2/27 -1/3*a2*a0/a12 +a02/a13 = 0
Du kannst also z als 3. Wurzel direkt bestimmen, falls für den linearen Koeffizient gilt: a2*a0/a12 -1/3 = 0
In diesem Fall gilt dann:
z = - (+2/27 -1/3*a2*a0/a12 +a02/a13)1/3 = 1/3 +a0/a1/w
w = a0/a1 / (-1/3 -(+2/27 -1/3*a2*a0/a12 +a02/a13)1/3)
Also musst Du a2, a1, a0 so berechnen, dass gilt 3*a0*a2 = a12
Du hast also als gegebene Koeffizienten b0, b1, b2 für das normierte kubische Polynom und erhältst
x3 +b2 x2 +b1 x +b0 = 0 ==> (x -k)3 +(3*k +b2) (x -k)2 +(3*k2 +2*b2*k +b1) (x -k) +k3 +b2 k2 +b1 k +b0 = 0
= (x -k)3 +a2 (x -k)2 +a1 (x -k) +a0 = 0
also besteht das Problem darin, k zu finden:
3*a0*a2 = a12 <=> 3 * (k3 +b2 k2 +b1 k +b0) * (3 k +b2) = (3 k2 +2b2 k +b1)2
3 (3k4 +b2 k3 +3b2 k3 +b22 k2 +3b1 k2 +b1 b2 k +3b0 k +b0b2)
= (9k4 +12 b2 k3 +4b22 k2 +6b1 k2 + 4b1b2 k +b12)
<==> (9 k4 +3 b2 k3 +9 b2 k3 +3 b22 k2 +9 b1 k2 +3 b1 b2 k +9 b0 k +3 b0b2)
= (9k4 +12 b2 k3 +4b22 k2 +6b1 k2 + 4b1b2 k +b12)
<==> (3 b1 -b22 ) k2 +(9 b0 - b1b2) k +3 b0b2 -b12 = 0
In Deinem Beispiel ist b0 = -14 und b1 = -4 und b2 = 0, also ist k:
(3*(-4) -0) k2 +(9*(-14) -0) k +3*0 -(-4)2 = 0
-12 k2 -126 k -16 = 0 <=> 12 k2 +126 k +16 = 0 <=> k1,2 = 1/12*( -63 +/- (632 -192)1/2)) = 1/12*(-63 +/- (3777)1/2) = -0.128558145 oder -10.037144185
==> k1 = -0.128558145
und a0 = k13 +b2 k12 +b1 k1 +b0 = - 13.48789212
und a1 = 3 k12 +2 b2 k1 +b1 = - 3.950418409
und a2 = 3 k1 +b2 = - 0.385674437
w3 +a2 w2 +a1 w +a0 = 0
w = x -k = a0/a1 / (-1/3 -(+2/27 -1/3*a2*a0/a12 +a02/a13)1/3)
x1 = k +a0/a1 / (-1/3 -(+2/27 -1/3*a2*a0/a12 +a02/a13)1/3)
x1 = -0.128558145 +(-13.48789212)/(-3.950418409)
/ (-1/3 - (2/27 -1/3*(-0.385674437)*(-13.48789212)/3.9504184092 +13.487892122/(-3.9504184093)1/3 )
= -0.128558145 + 3.414294739 / (-1/3 -(-2.987966836)1/3) = -0.128558145 + 3.414294736 / (1.106985339)
= 2.955759791
Probe: x13 -4 x1 -14 = 0.00000337 (w)