0 Daumen
180 Aufrufe

Aufgabe:

Beweisen Sie die folgenden Aussagen:
a) Sei \( A \) eine Menge. Dann gilt: \( A=A \)
b) Sei \( M \) eine Menge und sei \( X \) eine Menge von Mengen. Dann gilt:
$$ M \cup\left(\bigcap_{N \in X} N\right)=\bigcap_{N \in X}(M \cup N) $$

Kann mir Jd von euch dabei helfen?

von

Kann mir Jd von euch dabei helfen ist keine geeignete Überschrift für eine Frage.

Was ist den A...............

Sorry Müller wenn dich meine Frage stört ,

ich hab nur um Hilfe gebeten.

im ersten Semester sind wir wirklich durcheinander.

du hast es auch schon erlebt, wie man sich im ersten semester fühlt ,

Hi , also die Frage war Nummer 2 ich meine    b)

Hallo

 was hast du mit der Antwort im anderen forum gemacht?

https://www.onlinemathe.de/forum/Aussagen-beweisen-19

lul

b) hast du doch im andern Forum :)

Hier müsstest du erst noch die Fragestellung abtippen. Vgl. Schreibregeln.

1 Antwort

+2 Daumen
a) Sei A eine Menge. Dann gilt: A = A.

Sei A eine Menge. Dann gilt a∈A ⇔ a∈A für jedes a. Laut Definition der Gleichheit von Mengen gilt dann A = A.

von 53 k 🚀

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community