0 Daumen
1,3k Aufrufe

Mich würde interessieren, ob ich einen Induktionsbeweis wie folgt formal korrekt auf Englisch schreiben kann:

Karl Friedrich Gauss - a famous mathematician - invented a formula with which one can calculate the sum of the first nn natural numbers without summing up each element one by one. i=1ni=n(n+1)2 \sum\limits_{i=1}^{n}{i}=\frac{n\cdot (n+1)}{2}  We're going to prove this formula for all nNn\in\mathbb{N} by mathematical induction:

Base Case Let n=1n = 1 be the first value for which k=1ni=n(n+1)2 \sum\limits_{k=1}^{n}{i}=\frac{n\cdot (n+1)}{2} is true. We evaluate the left side and the right side of the given formula for n=1n=1:

- k=1ni=i=11k=1\sum\limits_{k=1}^{n}{i}=\sum\limits_{i=1}^{1}{k}=1

- n(n+1)2=1(1+1)2=22=1\frac{n\cdot (n+1)}{2}=\frac{1\cdot (1+1)}{2}=\frac{2}{2}=1

Both sides are equal and the given formula is true for n=1n=1 \checkmark.

Inductive Step Let kNk\in\mathbb{N} be given and suppose the formula is true for n=kn = k. If we want to prove that the statement is true for n=k+1n = k+1, then i=1k+1i=i=1ki+(k+1)=k(k+1)2by induction hypothesis+(k+1)=k(k+1)+2(k+1)2=(k+1)(k+2)2=(k+1)((k+1)+1)2 \begin{array}{lcl} \sum\limits_{i=1}^{k+1}{i}&=&\sum\limits_{i=1}^{k}{i} + (k+1)\\ &=&\underbrace{\frac{k\cdot (k+1)}{2}}_{\text{by induction hypothesis}} +(k+1)\\ &=&\frac{k\cdot(k+1)+2(k+1)}{2}\\ &=&\frac{(k+1)\cdot (k+2)}{2}\\ &=&\frac{(k+1)\cdot ((k+1)+1)}{2}\\ \end{array} Thus, the formula holds for n=k+1n = k + 1, and the proof of the induction step is complete.

By the principle of induction, the  formula is true for all nNn\in\mathbb{N}. \square

Thanks in advance :)

Avatar von

1 Antwort

0 Daumen
 
Beste Antwort

Ich finde es ganz prima !

Avatar von 289 k 🚀

-- Merci :) --

Ein anderes Problem?

Stell deine Frage