0 Daumen
1,2k Aufrufe

 

leider war ich die Woche krank und sie haben in meinem Mathe-Modul in der Uni mit einem neuen Stoffgebiet angefangen. Nun soll ich die folgende Summe vereinfachen:

\sum _{ i=0 }^{ n }{ \frac { i(i+4) }{ 2 }  } +\sum _{ i=4 }^{ n+4 }{ \frac { i(i-4) }{ 2 }  } -\sum _{ i=0 }^{ n }{ ({ i }^{ 2 } } +3i)

Summe.

Leider ist mein Matheuntericht auch schon wieder etwas länger her und ich weiß nicht, wie ich mit dem Summenzeichen umgehen soll. In Grundzügen versteh ich das Summenzeichen (also soweit wie ich es bis jetzt für Programmierung gebraucht habe), aber ich weiß nicht, wie ich es vereinfachen kann.

 

Es würde mich freuen, wenn mir jemand erklärt, wie das funktioniert.

 

Gefragt von
jap das ist die gleiche aufgabe - kann dir nur raten wikipedia und den vom mathecoach erwähnten link anzugucken - im grunde stehen dort die lösungen - und unter einbezug von beiden quellen erlangt man auch das nötige verständnis

1 Antwort

0 Daumen

Ich probiere mal den Ausdruck zu vereinfachen.

∑ i=0 to n (i*(i+4)/2) + ∑ i=4 to n+4 (i*(i-4)/2) - ∑ i=0 to n (i^2 + 3i)
∑ i=0 to n (i*(i+4)/2) + ∑ i=0 to n ((i+4)*(i)/2) - ∑ i=0 to n (i^2 + 3i)
∑ i=0 to n (i*(i+4)/2 + (i+4)*(i)/2 - i^2 + 3i)
1/2 * ∑ i=0 to n (i*(i+4) + (i+4)*(i) - 2i^2 + 6i)
1/2 * ∑ i=0 to n (i^2 + 4i + i^2 + 4i - 2i^2 + 6i)
1/2 * ∑ i=0 to n (14i)
∑ i=0 to n (7i)
7·n·(n + 1)/2

Beantwortet von 260 k

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage sofort und kostenfrei

x
Made by a lovely community
...