0 Daumen
958 Aufrufe
Bei welchen Parameterwerten besitzt der Graph der angegebenen Funktion genau einen Extrempunkt ? Und für welche Werte besitzt der Graph keine Extrempunkte? 
ft(x) = 2x^3 + 3tx^2 + 6 tx + 1 
bitte mit ausführlichen erklärungen, vielen dank.
Avatar von

1 Antwort

+1 Daumen

ft(x) = 2x3 + 3tx2 + 6 tx + 1 

hat die Grenwerte  ± ∞  für x → ± ∞

Es gibt also zwei Extremwerte oder keinen Extremwert.

Kein Extremwert:

f '(x) = 6·x2 + 6·t·x + 6·t = 0   | : 6

x2 + t·x + t = 0

x2 + px + q = 0

pq-Formel:  p = t  ; q = t

x1,2 = - p/2 ± (p/2)2q\sqrt{(p/2)^2 - q}

x1,2 =   ( ±√(t·(t - 4)) - t)/2 

Für t = 0 oder t = 4  wird die Wurzel 0, man hat also eine doppelte Nullstelle von f ' bei -t/2

→ Sattelpunkt und damit kein Extremwert.

Hier eine Veranschaulichung:

Bild Mathematik

Gruß Wolfgang

Avatar von 86 k 🚀
vielen dank! kann eine funktion dritten grades nie eine einzige Extremstelle haben?

Nein, sie kommt von -∞ und geht nach ∞  (oder umgekehrt)

wenn sie einen Hochpunkt hat, muss sie einen Tiefpunkt haben, damit sie wieder nach oben kommt (oder umgekehrt)

Ein anderes Problem?

Stell deine Frage