0 Daumen
350 Aufrufe

die frage steht schon im titel :)

von

4 Antworten

0 Daumen

7·x - 24·y + 9 = 0 --> y = 7/24·x + 3/8

-1/(7/24) = -24/7

Senkrechte Gerade durch Kreismittelpunkt in die Kreisgleichung einsetzen

(x + 2)^2 + (- 24/7·(x + 2))^2 = 625 --> x = -9 ∨ x = 5

- 24/7·(-9 + 2) = 24

- 24/7·(5 + 2) = -24

Die Tangenten lauten also

y = 7/24·(x + 9) + 24

y = 7/24·(x - 5) - 24

Skizze:

blob.png

von 388 k 🚀

Hallo coach,
welch seltenes Ereignis :
3 Experten 3 Meinungen.
Muß ich einmal überprüfen.

0 Daumen

( x + 2 ) ^2 + y^2 = 625
5x - 24 y + 9 = 0

y = √ ( 625 - ( x - 2 ) ^2 )
y = -9/24 - 5/24 * x

Steigung der Tangente
-5/24

gm-20.JPG

( -3.1 | 24.47 )

von 111 k 🚀

Schau mal deine Geradengleichung und das Original an.

Korrektur
( -5 | 24 ) habe ich jetzt auch heraus.

gm-20b.JPG

Bitte direkt sagen
anstelle
5x - 24 y + 9 = 0
muß es heißen
7x - 24 y + 9 = 0
Das erspart mir nämlich Arbeit.

Was ist eigentlich der Unterschied
Koordinatengleichung der Tangenten
und
Gleichung der Tangenten
?

Das erspart mir nämlich Arbeit.

Lach. Mir aber nicht. Und wer sagt denn, das ich dir das denken abnehmen wollte.

Koordinatengleichung der Tangenten

Die Koordinatengleichung hat die Form

ax  + by = c

Ich habe sie nicht angegeben, weil ich ja mal davon ausgehe, dass der Fragesteller etwas auch selber machen kann.

0 Daumen

Es geht um eine Tangente mit der Steigung 7 an eine Ellipse.

Ellipsengleichung nach y aufgelöst und abgeleitet: y'=(x+2)/±√(-x2-4x+621). (x+2)/±√(-x2-4x+621)=7 hat die Lösungen x1=-26 und x2=22. Die Punkte an diesen Stellen sind die Berührpunkte. Die Punkt-Steigungs-Form ergibt dann die Tangentengleichungen.

von 102 k 🚀

Die Ellipse ist ein Kreis.

0 Daumen

Mögliche Gleichungen der Tangenten an k:(x+2)^2+y^2=625, die parallel zu g:7*x-24*y=-9 verlaufen, lassen sich zum Beispiel so bestimmen:

Löse das Gleichungssystem (x+2)^2+y^2=625 und 7*x-24*y=a nach (x,y) auf. Setze nun die in den Lösungen enthaltene Diskriminante 390429-28*a-a^2 gleich Null, um herauszufinden für welche a die Determinante verschwindet. Dies ist für a∈{-639, 611} der Fall. Damit ergeben sich die Gleichungen

7*x-24*y=611 und 7*x-24*y=-639.

von 22 k

Auf dem oben beschriebenen Lösungsweg wird die Bestimmung der Berührpunkte umgangen. Alternativ dazu ist es aber auch möglich, über die Berührpunkte zu den Tangentengleichungen zu gelangen:

Offenbar ist die Gerade mit der Gleichung 24*x+7*y=-48 diejenige Orthogonale zu den beiden gesuchten Tangenten, die durch den Kreismittelpunkt geht. Ihre Schnittpunkte mit der Kreislinie sind die Berührpunkte. Durch Auflösen des Gleichungssystems (x+2)^{2}+y^{2}=625 und 24*x+7*y=-48 nach (x,y) kommt man zu den Berührpunkten (5|-24) und (-9|24) und darüber zu den Tangentengleichungen

7*x-24*y=7*5-24*(-24) und
7*x-24*y=7*(-9)-24*24

also

7*x-24*y=611 und
7*x-24*y=-639

wie oben.

Ein anderes Problem?

Stell deine Frage

Willkommen bei der Mathelounge! Stell deine Frage einfach und kostenlos

x
Made by a lovely community