0 Daumen
1,9k Aufrufe

Aufgabe:

Eine Gerade m: x=\( \begin{pmatrix} 4\\1\\-5 \end{pmatrix} \) +w•\( \begin{pmatrix} 4\\2\\-7 \end{pmatrix} \)  durchstößt im Punkt P die Ebene E x=\( \begin{pmatrix} 2\\2\\-1 \end{pmatrix} \)+s\( \begin{pmatrix} 0\\-4\\2 \end{pmatrix} \) +t\( \begin{pmatrix} 2\\-1\\-3 \end{pmatrix} \) bzw. E:  7x+2y+4z=14

Lösen Sie rechnerisch die Koordinaten des Punktes P

Avatar von

2 Antworten

0 Daumen

 \( \begin{pmatrix} 7\\2\\4 \end{pmatrix} \) ·[\( \begin{pmatrix} 4\\1\\-5 \end{pmatrix} \)+w·\( \begin{pmatrix} 4\\2\\-7 \end{pmatrix} \)] ausmultiplzieren und nach w auflösen. w in Geradengleichung einsetzen.

Avatar von 124 k 🚀

Welche Zahlen muss ich in den ersten Vektor einsetzen?

Wenn ich w in Gerade m einsetzte ist das Ergebnis dann der Punkt P?

Hallo Lena 22. Ich habe zuerst die Ebenengleichung in die Normalenform umgeschrieben und dann den Tern der Geraden eingesetzt.

Wenn du w in Geradengleichung einsetzt, ist das Ergebnis der Schnittpunkt von Gerade und Ebene.

Also ist der Schnittpunkt Punkt P weil die Ebene dort durchstoßen wird ?

Einfacher geht es, wenn m in die Koordinatengleichung von E eingesetzt wird.

Wenn ich wüsste wie ich es einsetzten muss

Die Gleichung von m lässt sich auch so notieren: $$\begin{aligned} m:\: \overrightarrow{x} &= \begin{pmatrix} 4\\1\\-5 \end{pmatrix}+w\cdot \begin{pmatrix} 4\\2\\-7 \end{pmatrix}\\[3em] m:\: \begin{pmatrix} x\\y\\z \end{pmatrix} &= \begin{pmatrix} 4-4w\\1+2w\\-5-7w \end{pmatrix} \end{aligned}$$Jetzt können die einzelnen Komponenten (Klammern nicht vergessen) der rechten Seite in die passenden Stellen der Koordinatengleichung von E eingesetzt werden.

Also E: 7·(4-4w)+2·(1+2w)+4·(-5-7w)=14 ?

Ja. Damit nun w bestimmen und dieses dann in m einsetzen, um den Ortsvektor von P zu berechnen.

Ist w=1? Oder habe ich mich verrechnet

Da hast du dich verrechnet.

Welche Zahl ist den w

Ist w=-1/13?

Nun, das habe ich auch.

Ist P (48/13;11/13;-72/13)?

0 Daumen

a)

[2, 2, -1] + r·[0, -4, 2] + s·[2, 1, -3] = [4, 1, -5] + t·[4, 2, -7] --> r = 0.5 ∧ s = -3 ∧ t = -2

P = [4, 1, -5] - 2·[4, 2, -7] = [-4, -3, 9]

Wer keine linearen Gleichungssysteme mag wandelt die Parameterform der Ebene zuerst in die Koordinatenform der Ebene um und löst es dann wie b) über die Koordinatenform.

b)

[4, 1, -5] + t·[4, 2, -7] = [4·t + 4, 2·t + 1, - 7·t - 5]

7·(4·t + 4) + 2·(2·t + 1) + 4·(- 7·t - 5) = 14 --> t = 1

P = [4, 1, -5] + 1·[4, 2, -7] = [8, 3, -12]

Avatar von 493 k 🚀

Welche Aufgabe b)?

Man hat doch 2 Ebenen E gegeben. Also habe ich dafür auch 2 Teile a) und b) gemacht.

Das sind doch nur verschiedene Darstellungen derselben Ebene E, oder?

Ah. Ich sehe gerade das ich einen Vektor verkehrt aufgeschrieben habe. Statt

[2, 2, -1] + r·[0, -4, 2] + s·[2, 1, -3] = [4, 1, -5] + t·[4, 2, -7]

sollte es lauten

[2, 2, -1] + r·[0, -4, 2] + s·[2, -1, -3] = [4, 1, -5] + t·[4, 2, -7] --> r = -1 ∧ s = 3 ∧ t = 1

P = [4, 1, -5] + 1·[4, 2, -7] = [8, 3, -12]

Du hast auch Recht. Die beiden Ebenen sind in der Tat gleich bzw. identisch.

Okay. In meiner Umformung ist auch ein Vorzeichenfehler.

Ein anderes Problem?

Stell deine Frage