0 Daumen
810 Aufrufe

meine Aufgabe lautet:

Zeigen Sie: für n,m ∈ ℕ mit n ≥ m ≥ 2 gilt:

\sumk=m \n{2/k3 - k} = (1/(m2 - m )) - (1/(n2 + n))


als Hinweis ist angegeben: Für x3 x∈ℝ gilt x3 - x = (x-1)x(x+1)


Mein Problem ist jetzt, dass ich das ohne Partialbruchzerlegung lösen soll, da wir diese noch nicht gelernt haben. Kann mir da jemand helfen oder vielleicht eine nette Anregung zukommen lassen?


LG

Avatar von
Alternativ zur PBZ zeige per Induktion über \(n\), dass \(\large\sum\limits_{k=2}^n\frac2{k^3-k}=\frac12-\frac1{n(n+1)}\) für alle \(n>2\) gilt. Der Hinweis würde dann im Induktionsschritt Anwendung finden.
Das hilft mir sehr weiter!

Ein anderes Problem?

Stell deine Frage