f(x) = ASIN(x·√(2 - x2))
f'(x) = 1/√(1 - (x·√(2 - x2))2) · (1·√(2 - x2) + x·1/(2·√(2 - x2))·(- 2·x))
f'(x) = 1/√(1 - x2·(2 - x2)) · (√(2 - x2) - x/(√(2 - x2))·x)
f'(x) = 1/√(1 - 2·x2 + x4) · (√(2 - x2) - x2/√(2 - x2))
f'(x) = 1/√((1 - x2)2) · (√(2 - x2) - x2/√(2 - x2))
f'(x) = 1/|1 - x2| · ((2 - x2)/√(2 - x2) - x2/√(2 - x2))
f'(x) = 1/|1 - x2| · ((2 - x2 - x2)/√(2 - x2))
f'(x) = 1/|1 - x2| · ((2 - 2·x2)/√(2 - x2))
f'(x) = 1/|1 - x2| · (2·(1 - x2)/√(2 - x2))
f'(x) = 2·SIGN(1 - x2)/√(2 - x2)